Nobelove nagrade za fiziku često odlaze u područje astrofizike. Nobelovu nagradu za fiziku 2020. godine podijelili su Roger Penrose, kojem je polovica nagrade dodijeljena za otkriće da je nastanak crnih rupa predviđen općom teorijom relativnosti te Reinhard Genzel i Andrea Ghez, kojima je dodijeljena druga polovica nagrade za otkriće supermasivnoga zbijenog tijela u središtu naše galaksije (ili jednostavnije rečeno, supermasivne crne rupe).

A zašto su ta otkrića toliko važna da im je dodijeljena ova velika nagrada saznajte u tekstu ili predavanju s Youtube kanala Astroučionice u nastavku.

Pretplatite se na Youtube kanal Astroučionice i budite u toku 🙂

Što su crne rupe?

Kako bismo zašli u pozadinu važnosti ovih otkrića, prvo moramo vidjeti što su to uopće crne rupe.

Jedan od čestih opisa crnih rupa jest ovaj:

crna rupa dio je prostor-vremena u kojemu je gravitacija toliko jaka da joj se ni svjetlost ne može “otrgnuti”.

Do toga dolazi tako da se velika masa zbije u vrlo malen prostor. Primjerice, kada bi se cijela Zemlja sabila na veličinu malene kuglice koja bi stala u čajnu žličicu, ona bi imala svojstva crne rupe.

Jedan od glavnih načina kako crne rupe nastaju u svemiru jest putem supernova, eksplozija masivnih zvijezda, ugrubo 8 – 10 puta masivnijih od našega Sunca, do kojih dolazi kada zvijezda u svojemu središtu potroši svu tvar kojom je učinkovito stvarala energiju i održavala svoje slojeve u ravnoteži. Kad se to dogodi, a događa se kad je središte puno željeza, zvijezda implodira, uruši se u sebe, a reakcija na to golema je eksplozija nakon koje ostaju ili neutronska zvijezda ili crna rupa. Jedan drugi kanal stvaranja crnih rupa može biti stapanje dviju neutronskih zvijezda.

Danas znamo i da postoje supermasivne crne rupe, masa milijuna i milijardu puta većih od mase Sunca. I znamo da gotovo svaka galaksija sadržava jednu takvu supermasivnu crnu rupu u svojemu središtu.

Glavne značajke crnih rupa prikazane su na ilustraciji u nastavku te one uključuju akrecijski disk oko crne rupe s kojega tvar upada u crnu rupu i koji je tako “hrani”. A posebno su bitni singularitet – beskonačno malena točka u kojoj je sadržana sva masa crne rupe – te obzor, koji se često naziva i horizontom događaja, iza kojeg nema povratka – čak se ni svjetlost ne može vratiti ako jednom prijeđe obzor, već neizbježno pada – u singularitet.

Umjetnički prikaz crne rupe
Izvor: ESO, ESA/Hubble, M. kornmesser, CC BY 4.0

Ovaj gornji opis crnih rupa relativno je uobičajen popularno-znanstveni prikaz crnih rupa. A sad ćemo zaći iza kulisa i vidjeti kako to sve zapravo znamo. Naime, ovih nekoliko kratkih rečenica opisa što to crna rupa jest tkano je u vrlo dugačkoj priči koja počinje u davnome 18. stoljeću, a zamah je dobila prije stotinjak godina. A kad kažem zamah, zapravo mislim na uspone i padove kroz tih stotinjak godina.

Kako smo došli do današnjeg znanja o crnim rupama?

O postojanju crnih rupa, odnosno tamnih tijela takvih značajki da bi na njima brzina oslobađanja bila brža od brzine svjetlosti, promišljalo se već krajem 18. stoljeća, dakle mnogo prije Einsteina i njegove teorije gravitacije koja je nastala u 20. stoljeću.

Tijela s kojih se svjetlost ne bi mogla osloboditi

Podsjetimo se, brzina oslobađanja ona je brzina koju tijelo treba postići kako bi se oslobodilo gravitacijskoga polja drugog tijela. Primjerice, ako sa Zemlje želimo ispucati neko tijelo na kraj Sunčeva sustava, to moramo učiniti brzinom od 11,2 kilometra u sekundi.

Ilustracija brzine oslobađanja

A ono što su John Mitchell i Pierre-Simon Laplace razmatrali jest što se događa u slučaju da je brzina oslobađanja nekog tijela jednaka brzini svjetlosti. I ako se jednadžba brzine oslobađanja (prikazana na gornjoj slici) samo malo provrti i riješi tako da se izračuna za polumjer, iz toga proistječe da je 2 puta gravitacijska konstanta puta masa tijela podijeljeno s kvadratom brzine svjetlosti izraz za polumjer takvoga tamnog tijela s kojeg se svjetlost ne bi mogla osloboditi (odnosno, r = 2GM / c2). Današnjim rječnikom: to su crne rupe.

Slijedom toga, John Mitchell zaključuje da s takvih tijela:

„ne bismo imali informaciju od svjetlosti. A kad bi se druga svijetla tijela gibala oko njih, mogli bismo možda iz gibanja tih tijela dokučiti postojanje središnjih tijela s određenom vjerojatnošću.“

Ovo se događalo krajem 18. stoljeća i trebalo je čekati čak do početka 21. stoljeća da se ovaj eksperiment uistinu ostvari. No krenimo redom.

Einsteinova opća teorija relativnosti

1915. Einstein objavljuje svoju opću teoriju relativnosti koja u suštini opisuje kako se mjere udaljenosti – točnije rečeno intervali u prostor-vremenu – uz postojanje mase. Ta teorija je revolucionarna jer u suštini daje potpuno nov opis gravitacije i svijeta u kojem živimo.

Opća teorija relativnosti

Živimo u četverodimenzionalnom svijetu koji se proteže ne samo kroz tri prostorne, nego i jednu vremensku koordinatu. Masa djeluje tako da zakrivljuje prostor-vrijeme (kao što je slikovito prikazano na gornjoj ilustraciji u kojoj su kuglice masa, a mreža prostor-vrijeme), a zakrivljeno prostor-vrijeme zauzvrat određuje putanje tijela koja se gibaju u tom prostor-vremenu: kad biste neku kuglicu gurnuli da se giba po mreži na ilustraciji, na ravnim bi se dijelovima gibala pravocrtno, a na udubljenima, oko teških kuglica, zakrivljenim putanjama. Najveća brzina koju je moguće postići brzina je svjetlosti.

Glavne jednadžbe opće teorije relativnosti Einsteinove su jednadžbe polja. Izraz izgleda čak jednostavno (pogledajte sliku u nastavku). No ne dajte se zavarati, ne radi se o jednoj jednadžbi, nego sustavu mnogih jednadžbi koji je sve samo ne lako riješiti, a dobivena rješenja još teže protumačiti, kao što ćemo vidjeti kroz ovu priču.

Einsteinove jednadžbe: opća teorija relativnosti

Prvo precizno rješenje Einsteinovih jednadžbi: Schwarzschildovo rješenje

Do prvoga preciznog rješenja Einsteinovih jednadžbi polja došao je Karl Schwarzschild i objavio ga manje od dva mjeseca nakon što je Einstein objavio svoju teoriju. Schwarzschildovo rješenje opisuje prostor-vrijeme u posebnom gravitacijskom polju, onom nenabijene, nerotirajuće i sferno-simetrične mase. U vezi s ovim bitno je zapamtiti tu pretpostavku sferne-simetrije.

Schwarzchildovo rješenje izgleda ovako (pogledajte gornju sliku): ds s lijeve strane jednadžbe je interval u prostor-vremenu, a s desne strane jednakosti su vremenske i prostorne komponente. Schwarzschildovim polumjerom danas se naziva veličina rS koja iznosi dva puta gravitacijska konstanta puta masa tijela, podijeljeno s kvadratom brzine svjetlosti.

Smisao ovoga nije da se pogubimo u jednadžbama, nego da sagledamo što je znanstvenike zbunjivalo sljedećih pedeset godina. A zbunjivale su ih neobične stvari koje se događaju s ovim rješenjem Einsteinovih jednadžbi polja u određenim točkama.

Naime, za polumjer (r) jednak nuli, i za polumjer (r) jednak točno iznosu Schwarzschildova radijusa neki dijelovi ove jednadžbe ili nestaju ili divergiraju, odnosno postaju beskonačni. Što to točno znači, znanstvenici su rješavali sljedećih pedeset godina, a možda već slutite, odgovor su singularitet i obzor crne rupe.

Tridesetih godina 20. stoljeća nastavlja se znanstvena rasprava u vezi s interpretacijom metrike. r jednako nula tumači se kao singularitet, a 1939. godine znanstvenici J. Robert Oppenheimer i Hartland Snyder (1939.) proučavaju urušavanje zvijezde uz pretpostavku sferne simetrije te po prvi puta Schwarzschildov polumjer, rS, tumače kao obzor. Kažu da ondje:

„zvijezda prekida komunikaciju s udaljenim opažačem; preostaje samo njezino gravitacijsko polje.“

Međutim, znanstvena zajednica, uključujući samog Einsteina, sve do ranih 1960-ih ostaje neuvjerena u to da se takve pojave događaju u stvarnome svijetu. A glavna je kritika usmjerena prema pretpostavci sferne simetrije, odnosno savršene kugle. To je, naime, idealizirani slučaj, jer ništa u svemiru nije savršeno kuglasto, te bi uz najmanja odstupanja od te simetrije sve možda moglo završiti drugačije, bez obzora i bez singulariteta.

Kvazari: sjajna nebeska tijela izvan naše galaksije

Novi trenutak u ovoj temi dolazi krajem 1950-ih kad se otkrivaju kvazari, vrlo sjajna zvjezdolika tijela.

A do velikog otkrića dolazi početkom 60-ih godina kada Maarten Schmidt otkriva da je riječ o tijelima izvan naše galaksije, a to je značilo da je stvarni sjaj kvazara toliko velik da može nadjačati sjaj cijele galaksije. Što bi mogao biti izvor tolikog zračenja bilo je nejasno. Ništa dotad poznato nije ga moglo objasniti i to je ponovo probudilo zanimanje za ponovnim razmatranjem gravitacijskog urušavanja i, u konačnici, crnih rupa.

Primjeri kvazara. Izvor: HST, ESO, CC BY 4.0

Doprinos Rogera Penrosea poimanju crnih rupa

Ovdje se u priču uključuje Roger Penrose koji 1964. proučava gravitacijsko urušavanje, ali bez ikakvih pretpostavki o simetriji. Kako bi riješio problem uvodi koncept zaglavljenih površina. To su dvodimenzionalne površine koje imaju svojstvo da sve zrake okomite na tu površinu završavaju u jednoj točki.

Na primjeru sferno-simetričnog urušavanja zvijezde, prikazanom na ilustraciji u nastavku, zaglavljena površina nastaje pri Schwarzschildovom polumjeru, nakon čega postoji samo jedan put – prema singularitetu.

Ono ključno što Penrose pokazuje u svojim proračunima jest da, jednom kada nastane zaglavljena površina, odstupanja od sferne-simetrije ne mogu spriječiti nastanak singulariteta. Drugim riječima, svaka crna rupa sadržava singularitet. Singularitet nije posljedica savršene sferne simetričnosti, nego izravni rezultat opće teorije relativnosti – rezultat koji ni sam Einstein nije očekivao.

Ovo revolucionarno otkriće započelo je novu eru u fizici i astronomiji. I zapravo su tek tada crne rupe, prethodno nazivane gravitacijski potpuno urušenim tijelima, dobile svoje današnje ime – crne rupe.

Općeprihvaćeno je i da su u srži kvazara crne rupe i da njihov golemi sjaj proizlazi iz prirasta tvari na supermasivnu crnu rupa u središtu galaksija. Rađa se i ideja da svaka galaksija, pa tako i naša, u svome središtu sadržava supermasivnu crnu rupu.

I to nas dovodi do drugoga dijela Nobelove nagrade za fiziku 2020. godine do potrage za supermasivnom crnom rupom u središtu naše galaksije.

Supermasivna crna rupa u središtu Mliječnoga puta

Potraga za supermasivnom crnom rupom u središtu naše galaksije

Definirajmo za početak središte naše galaksije. Ono što je već 1930-ih primijetio Karl Jansky jest radiosignal koji izvire iz središta naše galaksije, iz smjera zviježđa Strijelca, područja koje danas nazivamo Saggitarius A ili Strijelac A. 1970-ih uspjelo se modernim radioteleskopima izvor razlučiti na nekoliko njih, od kojih je najsjajniji zbijeni nazvan Sag A* – za koji danas znamo da je središte naše galaksije.

U suštini potrage za supermasivnom crnom rupom u središtu naše galaksije jest ona davna ideja Johna Mitchela o gibanju tijela koja se nalaze u blizini središta. A pretpostavka je ova:

Ako je koncentracija mase u središtu galaksije uslijed jedne supermasivne crne rupe, očekuju se Keplerove orbite zvijezda u blizini središta. To znači da će se one gibati onako kako se Merkur ili Zemlja gibaju oko Sunca. A ovakvo gibanje nebeskih tijela vrlo je dobro poznato i iz njega se može proračunati masa tijela oko kojeg se druga gibaju.

A